Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Brain Behav Immun ; 117: 242-254, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281671

RESUMO

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Assuntos
Microbioma Gastrointestinal , Hipuratos , Linfócitos T , Animais , Camundongos , Corpo Estriado , Neurônios , Comportamento Compulsivo
2.
Proc Natl Acad Sci U S A ; 120(37): e2309221120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669383

RESUMO

Emerging evidence suggests that dysregulation of neuroinflammation, particularly that orchestrated by microglia, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Danger signals including dead neurons, dystrophic axons, phosphorylated tau, and amyloid plaques alter the functional phenotype of microglia from a homeostatic (M0) to a neurodegenerative or disease-associated phenotype, which in turn drives neuroinflammation and promotes disease. Thus, therapies that target microglia activation constitute a unique approach for treating AD. Here, we report that nasally administered anti-CD3 monoclonal antibody in the 3xTg AD mouse model reduced microglial activation and improved cognition independent of amyloid beta deposition. In addition, gene expression analysis demonstrated decreased oxidative stress, increased axogenesis and synaptic organization, and metabolic changes in the hippocampus and cortex of nasal anti-CD3 treated animals. The beneficial effect of nasal anti-CD3 was associated with the accumulation of T cells in the brain where they were in close contact with microglial cells. Taken together, our findings identify nasal anti-CD3 as a unique form of immunotherapy to treat Alzheimer's disease independent of amyloid beta targeting.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Administração Intranasal , Peptídeos beta-Amiloides , Doenças Neuroinflamatórias , Anticorpos Monoclonais , Modelos Animais de Doenças
3.
Am J Respir Cell Mol Biol ; 69(6): 666-677, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552821

RESUMO

Eosinophils (Eos) reside in multiple organs during homeostasis and respond rapidly to an inflammatory challenge. Although Eos share chemical staining properties, they also demonstrate phenotypic and functional plasticity that is not fully understood. Here, we used a murine model of allergic lung inflammation to characterize Eos subsets and determine their spatiotemporal and functional regulation during inflammation and its resolution in response to resolvin D2 (RvD2), a potent specialized proresolving mediator. Two Eos subsets were identified by CD101 expression with distinct anatomic localization and transcriptional signatures at baseline and during inflammation. CD101low Eos were predominantly located in a lung vascular niche and responded to allergen challenge by moving into the lung interstitium. CD101high Eos were predominantly located in bronchoalveolar lavage (BAL) and extravascular lung, only present during inflammation, and had transcriptional evidence for cell activation. RvD2 reduced total Eos numbers and changed their phenotype and activation by at least two distinct mechanisms: decreasing interleukin 5-dependent recruitment of CD101low Eos and decreasing conversion of CD101low Eos to CD101high Eos. Collectively, these findings indicate that Eos are a heterogeneous pool of cells with distinct activation states and spatiotemporal regulation during resolution of inflammation and that RvD2 is a potent proresolving mediator for Eos recruitment and activation.


Assuntos
Alveolite Alérgica Extrínseca , Pneumonia , Eosinofilia Pulmonar , Camundongos , Animais , Eosinófilos/metabolismo , Líquido da Lavagem Broncoalveolar , Eosinofilia Pulmonar/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo , Fenótipo
4.
Nat Commun ; 14(1): 4286, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463881

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-ß that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos Intraepiteliais , Masculino , Camundongos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T , Camundongos Endogâmicos C57BL
5.
Proc Natl Acad Sci U S A ; 120(11): e2220272120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881624

RESUMO

T cells are present in early stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and play a major role in disease outcome and long-lasting immunity. Nasal administration of a fully human anti-CD3 monoclonal antibody (Foralumab) reduced lung inflammation as well as serum IL-6 and C-reactive protein in moderate cases of COVID-19. Using serum proteomics and RNA-sequencing, we investigated the immune changes in patients treated with nasal Foralumab. In a randomized trial, mild to moderate COVID-19 outpatients received nasal Foralumab (100 µg/d) given for 10 consecutive days and were compared to patients that did not receive Foralumab. We found that naïve-like T cells were increased in Foralumab-treated subjects and NGK7+ effector T cells were reduced. CCL5, IL32, CST7, GZMH, GZMB, GZMA, PRF1, and CCL4 gene expression were downregulated in T cells and CASP1 was downregulated in T cells, monocytes, and B cells in subjects treated with Foralumab. In addition to the downregulation of effector features, an increase in TGFB1 gene expression in cell types with known effector function was observed in Foralumab-treated subjects. We also found increased expression of GTP-binding gene GIMAP7 in subjects treated with Foralumab. Rho/ROCK1, a downstream pathway of GTPases signaling was downregulated in Foralumab-treated individuals. TGFB1, GIMAP7, and NKG7 transcriptomic changes observed in Foralumab-treated COVID-19 subjects were also observed in healthy volunteers, MS subjects, and mice treated with nasal anti-CD3. Our findings demonstrate that nasal Foralumab modulates the inflammatory response in COVID-19 and provides a novel avenue to treat the disease.


Assuntos
Anticorpos Monoclonais , COVID-19 , Animais , Humanos , Camundongos , Administração Intranasal , Anticorpos Monoclonais/uso terapêutico , Proteínas de Ligação ao GTP , Proteínas de Membrana , Quinases Associadas a rho , SARS-CoV-2 , Linfócitos T , Fator de Crescimento Transformador beta1/genética
6.
Microbiome ; 11(1): 32, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814316

RESUMO

BACKGROUND: Gamma-delta (γδ) T cells are a major cell population in the intestinal mucosa and are key mediators of mucosal tolerance and microbiota composition. Little is known about the mechanisms by which intestinal γδ T cells interact with the gut microbiota to maintain tolerance. RESULTS: We found that antibiotic treatment impaired oral tolerance and depleted intestinal γδ T cells, suggesting that the gut microbiota is necessary to maintain γδ T cells. We also found that mice deficient for γδ T cells (γδ-/-) had an altered microbiota composition that led to small intestine (SI) immune dysregulation and impaired tolerance. Accordingly, colonizing WT mice with γδ-/- microbiota resulted in SI immune dysregulation and loss of tolerance whereas colonizing γδ-/- mice with WT microbiota normalized mucosal immune responses and restored mucosal tolerance. Moreover, we found that SI γδ T cells shaped the gut microbiota and regulated intestinal homeostasis by secreting the fecal micro-RNA let-7f. Importantly, oral administration of let-7f to γδ-/- mice rescued mucosal tolerance by promoting the growth of the γδ-/--microbiota-depleted microbe Ruminococcus gnavus. CONCLUSIONS: Taken together, we demonstrate that γδ T cell-selected microbiota is necessary and sufficient to promote mucosal tolerance, is mediated in part by γδ T cell secretion of fecal micro-RNAs, and is mechanistically linked to restoration of mucosal immune responses. Video Abstract.


Assuntos
MicroRNAs , Microbiota , Camundongos , Animais , Linfócitos T , Receptores de Antígenos de Linfócitos T gama-delta/genética , Intestinos , Mucosa Intestinal , Imunidade nas Mucosas
7.
Cell Immunol ; 384: 104661, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621093

RESUMO

Multiple sclerosis is an autoimmune disease that affects the central nervous system. Because of its complexity and the difficulty to treat, searching for immunoregulatory responses that reduce the clinical signs of disease by non-aggressive mechanisms and without adverse effects is a scientific challenge. Herein we propose a protocol of oral tolerance induction that prevented and controlled MOG-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The genetically modified strain HSP65-producing Lactococcus lactis was orally administered for 5 consecutive days either before or during disease development in mice. Both protocols of feeding HSP65 resulted in significant reduction in the clinical score of EAE. Frequencies of LAP+CD4+Foxp3- regulatory T cells were higher in spleens and inguinal lymph nodes of fed mice. In addition, intravital microscopy showed that adherence of leukocytes to venules in the spinal cord was reduced in orally treated mice. Oral treatment with HSP65-producing L.lactis prevented leukocytes to leave the secondary lymphoid organs, therefore they could not reach the central nervous system. Despite the inhibition of pathological immune response that drive EAE development, activated T cells were at normal frequencies suggesting that oral tolerance did not induce general immunosuppression, but it led to specific control of pathogenic T cells. Our results indicate a novel therapeutic strategy to prevent and control autoimmune diseases such as multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Lactococcus lactis , Esclerose Múltipla , Camundongos , Animais , Camundongos Endogâmicos C57BL , Medula Espinal
8.
Immunol Lett ; 253: 41-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623708

RESUMO

The gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens. The ability of macrophages and DCs to induce either inflammation or tolerance is partially lineage imprinted, but can also be dictated by their activation state, which in turn is determined by their specific microenvironment. These cells express several surface and intracellular receptors that detect danger signals, nutrients, and hormones, which can affect their activation state. DCs and macrophages play a fundamental role in regulating T cells and their effector functions. Thus, modulation of intestinal mucosa immunity by targeting antigen presenting cells can provide a promising approach for controlling pathological inflammation. In this review, we provide an overview on the characteristics, functions, and origins of intestinal macrophages and DCs, highlighting the intestinal microenvironmental factors that influence their functions during homeostasis. Unraveling the mechanisms by which macrophages and DCs regulate intestinal immunity will deepen our understanding on how the immune system integrates endogenous and exogenous signals in order to maintain the host's homeostasis.


Assuntos
Tecido Linfoide , Macrófagos , Humanos , Inflamação/metabolismo , Alérgenos/metabolismo , Células Dendríticas , Mucosa Intestinal
9.
Front Cell Neurosci ; 17: 1322325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162004

RESUMO

The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.

10.
Immunol Lett ; 245: 29-37, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395272

RESUMO

Oral tolerance (OT) has classically been defined as the specific suppression of cellular and/or humoral immune responses to an antigen by prior administration of the antigen through the oral route. Multiple mechanisms have been proposed to explain the induction of OT including T cell clonal depletion and anergy when high doses of antigens are fed, and regulatory T (Treg) cell generation following oral administration of low and repeated doses of antigens. Oral antigen administration suppresses the immune response in several animal models of autoimmune disease, including experimental autoimmune encephalomyelitis, uveitis, thyroiditis, myasthenia, arthritis and diabetes, but also non-autoimmune inflammatory conditions such as asthma, atherosclerosis, graft rejection, allergy and stroke. However, human trials have given mixed results and a great deal remains to be learned about the mechanisms of OT before it can be successfully applied to people. One of the possible mechanisms relates to the gut microbiota and in this review, we will explore the cellular components involved in the induction of OT and the role of the gut microbiota in contributing to OT development.


Assuntos
Doenças Autoimunes , Encefalomielite Autoimune Experimental , Uveíte , Administração Oral , Animais , Autoantígenos , Humanos , Tolerância Imunológica , Linfócitos T Reguladores
11.
iScience ; 24(11): 103347, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34820606

RESUMO

Myeloid suppressor cells promote tumor growth by a variety of mechanisms which are not fully characterized. We identified myeloid cells (MCs) expressing the latency-associated peptide (LAP) of TGF-ß on their surface and LAPHi MCs that stimulate Foxp3+ Tregs while inhibiting effector T cell proliferation and function. Blocking TGF-ß inhibits the tolerogenic ability of LAPHi MCs. Furthermore, adoptive transfer of LAPHi MCs promotes Treg accumulation and tumor growth in vivo. Conversely, anti-LAP antibody, which reduces LAPHi MCs, slows cancer progression. Single-cell RNA-Seq analysis on tumor-derived immune cells revealed LAPHi dominated cell subsets with distinct immunosuppressive signatures, including those with high levels of MHCII and PD-L1 genes. Analogous to mice, LAP is expressed on myeloid suppressor cells in humans, and these cells are increased in glioma patients. Thus, our results identify a previously unknown function by which LAPHi MCs promote tumor growth and offer therapeutic intervention to target these cells in cancer.

12.
Front Immunol ; 12: 709861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475873

RESUMO

BACKGROUND: Immune hyperactivity is an important contributing factor to the morbidity and mortality of COVID-19 infection. Nasal administration of anti-CD3 monoclonal antibody downregulates hyperactive immune responses in animal models of autoimmunity through its immunomodulatory properties. We performed a randomized pilot study of fully-human nasal anti-CD3 (Foralumab) in patients with mild to moderate COVID-19 to determine if its immunomodulatory properties had ameliorating effects on disease. METHODS: Thirty-nine outpatients with mild to moderate COVID-19 were recruited at Santa Casa de Misericordia de Santos in Sao Paulo State, Brazil. Patients were randomized to three cohorts: 1) Control, no Foralumab (n=16); 2) Nasal Foralumab (100ug/day) given for 10 consecutive days with 6 mg dexamethasone given on days 1-3 (n=11); and 3) Nasal Foralumab alone (100ug/day) given for 10 consecutive days (n=12). Patients continued standard of care medication. RESULTS: We observed reduction of serum IL-6 and C-reactive protein in Foralumab alone vs. untreated or Foralumab/Dexa treated patients. More rapid clearance of lung infiltrates as measured by chest CT was observed in Foralumab and Foralumab/Dexa treated subjects vs. those that did not receive Foralumab. Foralumab treatment was well-tolerated with no severe adverse events. CONCLUSIONS: This pilot study suggests that nasal Foralumab is well tolerated and may be of benefit in treatment of immune hyperactivity and lung involvement in COVID-19 disease and that further studies are warranted.


Assuntos
Anticorpos Monoclonais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , Pneumonia/terapia , Administração Intranasal , Adolescente , Adulto , Anticorpos Monoclonais/administração & dosagem , Biomarcadores , Proteína C-Reativa/análise , COVID-19/fisiopatologia , COVID-19/terapia , Estudos de Coortes , Feminino , Humanos , Imunidade/efeitos dos fármacos , Interleucina-6/sangue , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Projetos Piloto , Pneumonia/prevenção & controle , Adulto Jovem
13.
Nat Commun ; 12(1): 4907, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389726

RESUMO

The intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.


Assuntos
Antígeno B7-H1/imunologia , Células Dendríticas/imunologia , Homeostase/imunologia , Mucosa Intestinal/imunologia , Receptores de Quimiocinas/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Colite/genética , Colite/imunologia , Colite/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Homeostase/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
14.
J Hazard Mater ; 419: 126463, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216962

RESUMO

The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 Spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles/5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulated with these peptides during 24 h of exposure in two concentrations (100 and 500 ng/mL). The control group ("C") was composed of tadpoles kept in polyethylene containers containing de-chlorinated water. Oxidative stress, antioxidant biomarkers and AChE activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has cholinesterasic effect in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anuros , Humanos , Larva , Glicoproteína da Espícula de Coronavírus
16.
Cell Host Microbe ; 26(6): 779-794.e8, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31784260

RESUMO

Fecal transfer from healthy donors is being explored as a microbiome modality. MicroRNAs (miRNAs) have been found to affect the microbiome. Multiple sclerosis (MS) patients have been shown to have an altered gut microbiome. Here, we unexpectedly found that transfer of feces harvested at peak disease from the experimental autoimmune encephalomyelitis (EAE) model of MS ameliorates disease in recipients in a miRNA-dependent manner. Specifically, we show that miR-30d is enriched in the feces of peak EAE and untreated MS patients. Synthetic miR-30d given orally ameliorates EAE through expansion of regulatory T cells (Tregs). Mechanistically, miR-30d regulates the expression of a lactase in Akkermansia muciniphila, which increases Akkermansia abundance in the gut. The expanded Akkermansia in turn increases Tregs to suppress EAE symptoms. Our findings report the mechanistic underpinnings of a miRNA-microbiome axis and suggest that the feces of diseased subjects might be enriched with miRNAs with therapeutic properties.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Microbiota Fecal , MicroRNAs/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Verrucomicrobia , Administração Oral , Akkermansia , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Fezes , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos , Humanos , Lactase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/imunologia , Verrucomicrobia/metabolismo
17.
J Immunol ; 203(10): 2621-2629, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578268

RESUMO

Oral tolerance is defined as the specific suppression of cellular and/or humoral immune responses to an Ag by prior administration of the Ag through the oral route. Although the investigation of oral tolerance has classically involved Ag feeding, we have found that oral administration of anti-CD3 mAb induced tolerance through regulatory T (Treg) cell generation. However, the mechanisms underlying this effect remain unknown. In this study, we show that conventional but not plasmacytoid dendritic cells (DCs) are required for anti-CD3-induced oral tolerance. Moreover, oral anti-CD3 promotes XCL1 secretion by small intestine lamina propria γδ T cells that, in turn, induces tolerogenic XCR1+ DC migration to the mesenteric lymph node, where Treg cells are induced and oral tolerance is established. Consistent with this, TCRδ-/- mice did not develop oral tolerance upon oral administration of anti-CD3. However, XCL1 was not required for oral tolerance induced by fed Ags, indicating that a different mechanism underlies this effect. Accordingly, oral administration of anti-CD3 enhanced oral tolerance induced by fed MOG35-55 peptide, resulting in less severe experimental autoimmune encephalomyelitis, which was associated with decreased inflammatory immune cell infiltration in the CNS and increased Treg cells in the spleen. Thus, Treg cell induction by oral anti-CD3 is a consequence of the cross-talk between γδ T cells and tolerogenic DCs in the gut. Furthermore, anti-CD3 may serve as an adjuvant to enhance oral tolerance to fed Ags.


Assuntos
Complexo CD3/imunologia , Quimiocinas C/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Linfócitos Intraepiteliais/imunologia , Muromonab-CD3/administração & dosagem , Muromonab-CD3/farmacologia , Administração Oral , Animais , Movimento Celular/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Feminino , Técnicas de Inativação de Genes , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T/genética , Mucosa Intestinal/imunologia , Linfonodos/imunologia , Masculino , Mesentério , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/farmacologia , Fragmentos de Peptídeos/farmacologia , Linfócitos T Reguladores/imunologia
18.
J Vis Exp ; (150)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31449231

RESUMO

Lymph nodes (LNs) are organs spread within the body, where the innate immune responses can connect with the adaptive immunity. In fact, LNs are strategically interposed in the path of the lymphatic vessels, allowing intimate contact of tissue antigens with all resident immune cells in the LN. Thus, understanding the cellular composition, distribution, location and interaction using ex vivo whole LN imaging will add to the knowledge on how the body coordinates local and systemic immune responses. This protocol shows an ex vivo imaging strategy following an in vivo administration of fluorescent-labeled antibodies that allows a very reproducible and easy-to-perform methodology by using conventional confocal microscopes and stock reagents. Through subcutaneous injection of antibodies, it is possible to label different cell populations in draining LNs without affecting tissue structures that can be potentially damaged by a conventional immunofluorescence microscopy technique.


Assuntos
Linfonodos/citologia , Linfonodos/diagnóstico por imagem , Microscopia Confocal/métodos , Animais , Feminino , Linfonodos/imunologia , Masculino , Camundongos
19.
An Acad Bras Cienc ; 91(suppl 1): e20170317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29044327

RESUMO

Resident and circulating immune cells have been extensively studied due to their almost ubiquitous role in cell biology. Despite their classification under the "immune cell department", it is becoming increasingly clear that these cells are involved in many different non-immune related phenomena, including fetus development, vascular formation, memory, social behavior and many other phenotypes. There is a huge potential in combining high-throughput assays - including flow cytometry and gene analysis - with in vivo imaging. This can improve our knowledge in both basic and clinical cell biology, and accessing the expression of markers that are relevant in the context of both homeostasis and disease conditions might be instrumental. Here we describe how we generated a novel mouse strain that spontaneously express three different fluorescence markers under control of well-studied receptors (CX3CR1, CCR2 and CD11c) that are involved in a plethora of stages of cell ontogenesis, maturation, migration and behavior. Also, we assess the percentage of the expression and co-expression of each marker under homeostasis conditions, and how these cells behave when a local inflammation is induced in the liver applying a cutting-edge technology to image cells by confocal intravital microscopy.


Assuntos
Antígeno CD11c/análise , Receptor 1 de Quimiocina CX3C/análise , Fígado/citologia , Fagócitos/citologia , Receptores CCR2/análise , Animais , Citometria de Fluxo , Fluorescência , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fagócitos/metabolismo
20.
Nat Commun ; 9(1): 3151, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089795

RESUMO

γδ T cells have many known functions, including the regulation of antibody responses. However, how γδ T cells control humoral immunity remains elusive. Here we show that complete Freund's adjuvant (CFA), but not alum, immunization induces a subpopulation of CXCR5-expressing γδ T cells in the draining lymph nodes. TCRγδ+CXCR5+ cells present antigens to, and induce CXCR5 on, CD4 T cells by releasing Wnt ligands to initiate the T follicular helper (Tfh) cell program. Accordingly, TCRδ-/- mice have impaired germinal center formation, inefficient Tfh cell differentiation, and reduced serum levels of chicken ovalbumin (OVA)-specific antibodies after CFA/OVA immunization. In a mouse model of lupus, TCRδ-/- mice develop milder glomerulonephritis, consistent with decreased serum levels of lupus-related autoantibodies, when compared with wild type mice. Thus, modulation of the γδ T cell-dependent humoral immune response may provide a novel therapy approach for the treatment of antibody-mediated autoimmunity.


Assuntos
Diferenciação Celular , Imunidade Humoral/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Compostos de Alúmen , Animais , Formação de Anticorpos , Autoanticorpos/sangue , Galinhas , Feminino , Adjuvante de Freund/imunologia , Glomerulonefrite , Imunização , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Linfonodos/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/imunologia , Modelos Animais , Modelos Imunológicos , Ovalbumina/sangue , Ovalbumina/imunologia , Receptores CXCR5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...